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Synopsis 
A general method of chromatogram correction for skewed instrument spreading in gel 

The correction method is so general that 
It ,admits nonsymmetric, 

Aspects of solution techniques are dis- 

permeation chromatography is presented. 
there is no restriction on the shape of the spreading function. 
non-Gaussian as well as nonconvolution type. 
cussed and an illustrative example is given to elucidate the method. 

INTRODUCTION 

One of the important problems associated with the determination of 
molecular weight distributions of polymers by gel permeation chromatogra- 
phy (GPC) is the correction of imperfect resolution due to instrument 
spreading. The extent and nature of instrument spreading depends on 
both the microscopic and macroscopic attributes of the GPC instrumenta- 
tion as well as the conditions under which it is operated. The continuous 
experimental chromatog-am f (z) obtained from GPC is mathematically re- 
lated to the true molecular weight distribution w ( y ) ,  by the integral equa- 
tion 

where x and y are elution volumes and a and b are the initial and final elu- 
tion volumes, respectively. The kernel N(z ,  y )  is the function which 
characterizes the instrument spreading of the GPC and is termed the 
spreading function. It can be looked upon as a unit impulse response 
which varies uith prevailing operating conditions. The problem to be 
solved in chromatogram correction can be simply stated as: knowing the 
functions f(z) and M ( z ,  y), find w(z). 

In the past, starting with the work of Tung,1,2 various methods of cor- 
rection for instrument spreading have been reported in the literature (Hess 
and Kratz, Smith14 Pickett, Cantow, and J o h n ~ o n , ~  Pierce and ArmonaslG 
Duerksen and Hamielec,' Hamielec and Ray18 Tung19 and Chang and 
Huang'O). In  his work, Tungs introduced both the Fourier analysis method 
and the polynomial method. A Gaussian kernel is required for the poly- 
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nomial method, whereas the Fourier analysis method can be extended to 
non-Gaussian kernels if the convolution form of the kernel M ( z  - y) is rc- 
tained to make the convolution theorem valid. In our previous paper,'" 
we have treated the case where M(x, y) is symmetric by using a variational 
approach on an equivalent minimization problem of quadratic functional. 

Most of the prcviously proposed methods for correcting the spreadkig 
characteristics of the GPC instrument have been based on a one-parameter 
distribution function of a symmetric nature, such as a Gaussian distribution 
with a constant resolution factor. It is known, however, that even for a 
monodisperse polymer sample the experimental GPC chromatogram can 
sometimes be skewed. Actual cases where skewness occurs have been dis- 
cussed by Hess and Kratz3 based on the diffusion-type packed bed model 
and by Balke and Hamielec" and by Tung and Runyon12 on the basis of 
GPC experimental data. Tung has shown that skewed chromatograms 
can still be characterized by a Gaussian distribution with the resolution 
factor h obtained from the reverse flow technique. Since it is experi- 
mentally established that the resolution factor h is not constant but varies 
with elution volume, it is desirable to develop a method which incorporates 
a variable resolution factor to  account for the skewness. It is also possible 
that we may encounter situations where characterization by Gaussian dis- 
tribution with variable h or other spreading functions of convolution type is 
no longer adequate and the use of more general nonsymmetric distributions 
for the kernel is the only alternative. For the general case, M(x,  y) # 
M(y, x), and the presently available correction methods cannot be used. 

In this paper, we propose a general method of chromatogram correction 
when the spreading function M(x,  y) is neither symmetric nor convolution 
type. The method also provides an easy solution to the problem involving 
a Gaussian spreading function with variable resolution factor h. The pro- 
posed method is relatively simple and unique, and there is no restriction on 
the form of the spreading function M ( x ,  y), except that it cannot be identi- 
cally zero in the interval [a, b ] .  

METHOD 

It is obvious that Chang and Huang's methodlo cannot be applied to eq. 
However, we multiply (1) because of the fact that M ( z ,  y) # M(y, 2). 

M ( x ,  z)  on both sides of eq. (1) and integrate over x from a to b to get 

J b  f(x)M(z, z)dx = lb M ( x ,  4[lb M ( x ,  Y) W(Y)dY]dz. (2) 

The right-hand side, upon interchanging the order of integration, becomes 
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Wc definc functions g(z)  and K ( z ,  y) bg 

g(2)  = J6 f(z) M(z, 2)dz 

K(z,  y) = M(z, 2 )  ilil(z, y)dz. 

On substitution of eqs. (3), (4), and (5) into eq. (2 ) ,  we obtain 

(4) 

It, is evidrnt that K(z ,  y) is positivc! drfinit,o if M(z, y) is, and that) K ( z ,  y) is 
symmetric, i.c., K(z ,  y) = K(y, z )  for 

We then itrmediately recognize eq. (6) to be of the same form treated in 
Chang and Huang'O (see eq. (1) of that paper) with f(z) and K(z ,  y) there 
replaced by g ( z )  and K(z ,  y). In terms of operator notation introduced, we 
have 

AW = g (8) 

where 

Here, g has no real physical meaning asf has, but it is a quantity mathemati- 
cally generated from f. We note that A is positive definite and self-ad- 
joint. The problem statement is then: knowing A and g ,  find w .  It was 
stated and proved in the previous paper that eq. (8) has a solution if and 
only if w minimizes the functional 

F(w) = ( A w , w )  - 2(w ,g )  (10) 
and the solution is unique (refer to the paperlo for definitions and deriva- 
tion). The method of solution by the first- and second-order steepest de- 
scent technique in function space has also been explained in detail in the 
same paper. 

SOME ASPECTS OF SOLUTION TECHNIQUES 

Although one can apply one of the methods presented in Chang and 
To see this, we recapitulate the Huang,'O a practical difficulty may arise. 

schemes. 
First-Order Method : 
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where 

vn = Awn - 9. (12) 

(13) 

Second-Order Method : 

Wn+t = wn + &nun + @nAUn (n = 0, 1, 2, . . .) 
where vn is defined in eq. (12) and an and bn are obtained from 

and 

The fact that the operator A now involves a double integral instead of a 
single integral indicates that the propagation of numerical errors in the 
integration of multiple integrals (Avn ,  Vn), (Avn,  Avn) ,  and (A%,, Av,),  etc., 
is severe. Although it is possible to estimate the errors involved in the in- 
tegrations, we shall not digress deep into the recondite exercise of numerical 
analysis. We only mention that this requires a very small integration step 
size to have a reasonably accurate iteration. Thus, the limitation on the 
step size makes the use of the second-order method somewhat unattractive 
from the practical point of view. Under these circumstances, we are left 
with the firsborder method, which is inferior to the second-order method. 
However, we can overcome the shortcomings of the first-order method by 
the following modified scheme: 

Wn+l = Wn - (n = 0, 1, 2, . . .) (16) 
where vn is again defined in eq. (12) and en is obtained in each iteration by 
minimizing (vn, vn) from a one-dimensional quadratic interpolation search 
technique (Zangwill’s methodt3). We shall refer to this scheme as the 
optimum-step gradient method. 

Another attractive method is the conjugate gradient method whose itera- 
tion scheme in the present context is 

where 

S n  = vn + tnSn-t 

so = vo, 

v, is the same as before, and en i s  again obtained by minimizing (vn, vn) by 
Zangwill’s quadratic search. In all cam, iteration is terminated when 
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(v,, v,) or ( v ~ ,  u,)/(g, g) becomes smaller than a prescribed tolerance 
number. 

ILLUSTRATIVE EXAMPLE 

Although physical examples of any arbitrary distribution can be treated, 
we demonstrate the method here for a simple case where the instrument 
spreading is Gaussian with variable h.  The spreading function is 

I- 

where h can be an arbitrary function of y. But we assume here an explicit 
form for the sake of illustration: 

h(y )  = (0.00008y2 + 0.004~ + 0.2)2. ( 19) 
It must be noted that in view of the form of h(y), M(s, y) is nonsymmetric, 
i.e., M ( x ,  y) # M(y, x). An assumed fictitious distribution is 

This is the example used by T ~ n g . ~  (Note: his h is our d h . )  The dis- 
tribution w(y) is plotted as the solid line in Figure 1 (also in Fig. 2). 

For this w(y) and the given M ( x ,  y), the raw chromatogram f(x) would 
appear as the dashed line in Figure 1 (also in Fig. 2). The question then is: 
Can we recover w(y) from f@), knowing M ( z ,  y)? Functions g(z) and 
K(z ,  y) are obtained from eqs. (4) and (5)  : 

It is obvious that K ( z ,  y) = K(y, z )  although M ( z ,  y) # M(y, 2). 

The function w(y) was recovered from f(x) by using the first-order 
method, the optimum-step gradient method, and the conjugate gradient 
method. The interval [a, b ]  was divided into 90 increments, and the 
Simpson’s one-third rule was used in evaluating the integrals. The di- 
vision of 90 increments was necessary to overcome the propagation of 
errors, whereas an appropriate division for most problems in the previous 

For simplicity, f(x) was taken as the starting 
function, wo(y) . 

It became apparent in the course of numerical computation that the 
optimum-step gradient method was convergent-wise superior to the first- 
order method, and therefore the latter was abandoned in favor of the 
former. The recovered w(y) by the optimum-step gradient method is 

was 50 increments. 
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Fig. 1. Chromatogram correction by the optimum-step gradient method, h = (0.00008y2 + 0.004~ + 0.2)2: (-) actual w ;  (-) chromatogramf; (a) recovered w. 
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Fig. 2. Chromatogram correction by the conjugate gradient method, h = (0.00008ya + 
0.004~ + 0.2)a: (-) actual w ;  (-) chromatogram f; (m) recovered w .  

plotted in Figure 1. The errors 
were (VIO, SO) = 0.205 X The w(y) ob- 
tained by the conjugate gradient method is also plotted in Figure 2, which 
again shows an excellent recovery. The errors for this case were (VIO, 810) 

= 0.171 X 10-6and ( v ~ ~ ,  vz9) = 0.411 X lo-'. 
We might add that for real experimental chromatograms, the correction 

is sensitive to possible errors or inaccuracy in the raw chromatogram data 

The result shows an excellent recovery. 
and ( ~ 2 ~ ,  ~ 2 ~ )  = 0.173 X loi7. 
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and gives rise to an oscillation in corrected w(y). To circumvent this, the 
experimental chromatogram must be treated by a method of data smooth- 
ing prior to the application of a correction method, as was suggested in the 
previous work. lo 

CONCLUSIONS 

A general problem of chromatogram correction for skewed instrument 
spreading of GPC has been treated. The formulation of the correction 
method has been carried out in quite a general setting so that the restriction 
on the shape of the spreading function is now removed; it can be nonsym- 
metric, non-Gaussian, and nonconvolution type. By mathematical 
manipulation, the problem can be cast into the symmetric form already 
treated in the previous work, and any one of the methods presented therein 
can be applied. The integration step size should then be sufficiently small 
to guarantee the accuracy needed for successful iterations. From a prac- 
tical point of view, two alternate methods are presented. A numerical 
example for a Gaussian spreading function with variable h illustrates the 
methods. As a concluding remark, it should be pointed out that if the 
spreading function M ( s ,  y) is symmetric, the previous methodlo supersedes 
the present technique. 
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